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Chapter 4
Practical Aspects of Variogram
Construction and Interpretation

4-1.  General

a. Chapter 2 presented the mathematical
foundation for geostatistics and the kriging tech-
nique.  One theme that pervades the technique is
the importance of the theoretical variogram.  The
theoretical variogram, or what we will often refer
to simply as the variogram, is a mathematical
function or model which is fitted to sample-
variogram points obtained from data.  Permissible
models, which include those given in Chapter 2,
belong to a family of smooth curves having par-
ticular mathematical properties and are each speci-
fied by a set of parameters.  Chapter 4 will
describe a sequence of stages for estimating and
investigating sample variogram points and a cali-
bration procedure for specifying the parameters of
the variogram model eventually fitted to the sample
points.  Although the calibration procedure is
largely an objective means for evaluating theoreti-
cal variograms, the process of obtaining sample
variogram points and finalizing a theoretical vari-
ogram remains an art as much as a science.  An
understanding of the material presented in Chap-
ter 2 as well as professional judgment achieved
through experience in geostatistical studies is
important in effectively using the guidelines pre-
sented in this section. 

b. An accurate estimate of a variogram is
needed from a kriging perspective because the cor-
relation matrix used to obtain the kriging weights
is constructed from the variogram values.  Even
more directly, the variogram affects the computa-
tion of the kriging variance (Equations 2-36 and
2-47) through the product of the kriging weights
and variogram values.  An accurate variogram also
has utility outside the strict context of kriging.  For
example, in augmenting a spatial network with new
data collection sites, the range parameter of the
variogram could be used as the minimum distance
of separation between the new sites and between
new and existing sites to maximize overall
additional regional information.  In another non-
kriging-specific application, the variogram is used
in dispersion variance computations in which the
variance of areal or block values is estimated from
the variance of point-data values (e.g., Isaaks and
Srivastava (1989), p. 480).

c. The stages of variogram construction are
described using an example data set of ground-
water elevations measured near Saratoga, WY
(Lenfest 1986), that are summarized in Table 4-1
and whose relative locations are shown in
Figure 4-1.

d. The sequence of steps in computing sample
variogram points depends on the stationarity prop-
erties of the regional variable represented by the
data.  If the mean of the regional variable is the
same for all locations, then it is said to be spatially

Table 4-1
Univariate Statistics for Example Data Sets1

Example Number of Minimum Maximum Mean Median Deviation Skewness
Identifier Measurements Transformation (Base units) (Base units)  (Base units) (Base units) (Base units) (Dimensionless)

Standard

Saratoga Drift 2,016.6 2,254.3 2,119.25 2,104.35 56.79 0.45

Water level A 83 Drift 25.6 65.68 42.30 38.54 10.13 1.03

Water level B 74 Drift 25.6 65.68 42.85 38.71 10.59 0.87

Bedrock A 108 None 22.64 80.48 44.42 42.82 10.76 0.89

Bedrock B 89 None 24.53 69.22 43.67 43.17 8.58 0.26

Water quality A 66 Natural log 2.08 8.01 5.19 5.59 1.75 -0.42

Base unit for Saratoga, water levels, A and B, and Bedrock A and B is feet; base unit for water quality A is log concentration,1

concentration in micrograms per liter.
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Figure 4-1.  Measured water levels from Saratoga
data

stationary; if the mean changes with location, then
it is spatially nonstationary.  Generally, if the data
have a stationary spatial mean, the discussions in
sections 4-3 and 4-7, which address nonstation-
arity and additional trend considerations, can be
omitted.  If the spatial mean is not stationary, as
for this example data set, then sections 4-3 and 4-7
become important, and the sequence of stages for
obtaining a variogram becomes an iterative pro-
cedure.  All variogram and kriging computations
for the Saratoga groundwater levels example were

performed by the interactive kriging software
described in Grundy and Miesch (1987).

4-2.  General Computation of Empirical
Variogram

a. As described in section 2-3, the variogram
((h) characterizes the spatial continuity of a
regional variable for pairs of locations as a func-
tion of distance or lag h between the locations. 
This variogram is sometimes called the theoretical
variogram because it is assigned a continuous
functional form that expresses the spatial correla-
tion for any lag in the region of analysis.  The
function is estimated by fitting one of the equations
given in section 2-3 to empirical or sample vario-
gram points 8((h) using data whose locations con-
tribute only a finite number of lags.  Although 8((h)
characterizes the spatial correlation of the data, it
is computed from residuals of the data off the spa-
tial mean.  Therefore, without prior knowledge of
nonstationarity in the underlying spatial process,
the first step in computing the sample variogram is
to identify existing nonstationarity indicated for the
spatial mean.

b. The approximation to Equation 2-19
begins by computing squared differences  from
the data values z(x ), z(x ), ...z(x ) collected at loca-i 2 n

tions x , x , ... x  1 2 n

(4-1)

If the spatial mean is stationary, then the squared
differences of the data are equivalent to the
squared differences of the residuals, and sample
variogram computations can be continued using
the data themselves.  If the spatial mean is strongly
nonstationary, the plot of Equation 4-1 versus the
distance between associated points may indicate a
trend or drift that would need to be removed before
further variogram computations could be made. 
Drift would have to be considered in HTRW
studies, such as determining contaminant concen-
trations areally dispersed from localized sources or 
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determining groundwater elevations following a e. To establish bins, either equal bin widths
local or regional gradient.  In such studies sample are specified and the distance between the two
variogram computations need to be made using most separated data points, h , is subdivided
residuals obtained by subtracting the estimated according to these equal increments, or a K is
drift value at each location from the value of the chosen that defines the bin width.  For the Sara-
datum at the location. toga data, a bin width of about 8 km established

c. The data in Equation 4-1 are differenced binned  values of Figure 4-2 are shown in Fig-
without considering the relative direction between ure 4-3.  The lag plotting positions are the average
the locations; that is,  is isotropically com- h values in the bin.  The symbol x indicates that
puted.  A plot of  versus h  for all i,j (i>j), N(h) is less than 30 pairs for the particular bin andi,j

where , produces a cloud of this differentiation will be discussed in section 4-3. 
points whose properties govern the behavior of 8(. Although the sample variogram is still preliminary,
The central tendency of the cloud would generally its general behavior at this stage is adequate to
increase with h.  A substantial increase in the indicate if nonstationarity needs to be addressed
central tendency that persists for large h can indi- before sample variogram refinement is undertaken.
cate a nonstationary spatial mean.  The cloud com-
puted for the Saratoga data, with groundwater
levels (z) in meters and distance (h) in kilometers,
is shown in Figure 4-2 and does show increasing
D  with increasing h, indicating potential a. An indication of substantial nonstationarity2

non-stationarity. or drift in the spatial mean would be a parabolic

d. Generally, there is a large amount of scat- occurs because differences between data contain
ter in these plots, as seen in Figure 4-2, and this differences in the drift component that increase as
scatter can conceal the central behavior of D  with h increases.  If Equation 2-16 is inserted into2

h.  One way to estimate the central tendency and to Equation 2-17, squaring the differences in µ
minimize the effect of aberrant data values is to greatly amplifies the increase with h.  In these
collect the D  into K bins or lag intervals of width cases of drift, generally a low-order (less than2

()h)  , k=1,...K and assign to 8( the average of the three) polynomial drift in (u,v) is fitted to the datak

values of D  in each bin.  This process is similar to and subsequently subtracted from the data to2

the way data are placed in bins for obtaining histo- obtain residuals.  Trend surfaces are not neces-
grams.  The expression for the kth average bin sarily limited to polynomial forms.  For example, a
value is numerical model of groundwater flow may be used

(4-2)

where N(h ) is the number of squared differencesk

that fall into bin k, and h  is the lag distance asso-k

ciated with bin k. I (h ) is an “indicator function”k i,j

that has a value of one if the h  falls into bin k andi,j

zero otherwise (it only includes values of  in
the calculation that have an h  that falls into thei,j

bin).  The lag value h  can be the midpoint of thek

bin or it can be the average of the actual lag values
for the points that fall in the bin. 

max

K=12 bins for (.  The 8( points computed from the

4-3.   Nonstationarity

shape through all lags in a plot of 8(.  This shape

to obtain residuals of groundwater head data.

b. In theory, the polynomial trend reflects a
slowly varying drift in the spatial mean and, as
such, one regional trend surface should be fitted to
all the data.  However, often the drift and residuals
are obtained locally; that is, using moving neigh-
borhoods of locations. Estimates of these values at
any point are thus made using a reduced number
(usually between 8 and 16) of surrounding loca-
tions.  This is done because ultimately the kriging
estimates are made using only the data values in
the given neighborhood.  Manipulating the kriging
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matrices takes less time when a smaller number of considerations needed for proper lagging.  As an
data values are used to make estimates and these example, for data collected on a uniform grid and
efficiencies can be significant when dealing with equal-sized bins, fixing an n to just satisfy the
large data sets.  Little accuracy is lost because the minimum N(h ) for the smaller lags will yield
nearest neighbors are the most influential in the insufficient data pairs to meet the minimum N(h )
kriging weighting scheme. for the larger lags.  Fixing an n to assure the mini-

c. A parabolic shape to 8( for the Saratoga N(h ) much greater than the minimum for the smal-
data is shown in Figure 4-3 for the sample vario- ler lags.  Therefore, the question of how much data
gram points plotted for lags up to about 32 km (the is required to adequately compute a variogram
first four points) and for lags beyond about 56 km. should also address the relative locations of the
The presence of a parabolic shape in the sample data-collection sites.
variogram points was not surprising, because
examination of the data indicates a north-south c. The first 10 of the 12 bins for 8( for the
gradient in the groundwater levels.  The simplest Saratoga data contained more than 30 data pairs. 
polynomial trend, linear in u and v, was fitted to all Therefore, the bin width can be decreased to get
the data using ordinary least-squares estimation. more points defining the early part of 8(.  These
Residuals obtained by subtracting this regional bin-width adjustments can be made to refine 8(
trend surface from the data were used to reestimate whether it is computed from the data or from the
8( in Equation 4-2 and the sample variogram for the residuals.  A plot of 8( for the residuals for the Sar-
residuals is shown in Figure 4-4. atoga groundwater elevations with the bin width

4-4.  Variogram Refinement

a. In the previous section, an initial 8( was problem areas, accessibility, and general spatial
specified by points computed from Equation 4-2. coverage.  In the Saratoga data set, nonuniform
In general, the larger N(h ) is for any bin or lag data spacing results in the number of data pairs ink

interval k, the more reliable will be the points each bin, although still greater than 30, being
defining 8((h ).  Also, the larger K is, the greater the highly variable among the bins.  This variabilityk

number of sample variogram points shaping 8(. yields different reliabilities for the points defining
However, N(h ) and K are competing elements of 8(.  To establish a balance for N(h ) among thek

8(.  Journel and Huijbregts (1978) suggest that bins, variable bin sizes can be used so that each
each lag interval k should have N(h ) equal to at bin contains approximately the same (large) num-k

least 30 pairs.  The American Society for Testing ber of points.  A bin with fewer points can be
and Materials (Standard D5922-96) suggests coalesced with an adjacent bin to form a wider bin
20 pairs for each lag interval.  For small data sets with a greater number of points.  Conversely, a bin
the number of intervals may have to be small to with an excessive number of points can be sub-
guarantee either number of recommended pairs in divided into adjacent, narrower bins. The coales-
all intervals. cing and subdividing procedure is largely trial and

b. It is difficult to determine the minimum satisfactory to the investigator.
number of data values n needed to satisfy the N(h )k

requirements for all lag intervals of a sample vari- e. The values of 8( at the smaller lag values
ogram.  Simple combinatorial analysis can estab- are the most critical to define the appropriate (. 
lish a sample size needed to achieve a given total Therefore, the trade-off between the number of
number of distinct pairs of items taken from the bins and the number of data pairs within each bin
sample, but it does not address the spatial can be varied for different regions of the sample 

k

k

mum N(h ) for the larger lags will generally havek

k

narrowed to about 6.5 km is shown in Figure 4-5.

d. Spatial data are usually not collected on a
uniform grid but occur in a pattern that reflects

k

error, until the distribution of the pairs of points is
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variogram.  At smaller lags, the numbers of data consider in interpreting the kriging results of the
pairs per bin can be nearer the minimum N(h ) to transformed data or in back-transforming krigingk

define more bins.  At larger lags, a smaller number results into the untransformed (original) units, as
of wider bins would be adequate.  Knowing that discussed in Chapter 1.  If a satisfactory variogram
the variogram should be a smooth function, ulti- of the original data cannot be achieved and a trans-
mately the analyst visually decides when the sam- formation is indicated, the sample variogram com-
ple variogram is sufficiently defined at all lags to putation process must begin again with Equa-
adequately approximate a theoretical variogram. tion 4-2.  Even though no transformation was

4-5.  Transformations and Anisotropy
Considerations

a. Transformations. b. Directional variograms and anisotropy.

(1)  A transformation is applied to a data set (1)  Anisotropy in the data can be investigated
generally for one of two interrelated purposes. by computing sample variograms for specific
First, a transformation can reduce the scale of directions.  Locations included in a given direction
variability of highly fluctuating data.  This varia- from any other location are contained in a sector of
bility would especially occur with contaminant a circle of radius h  centered on the location. 
concentrations in which order of magnitude The sector is specified by two angular inputs.  The
changes in data at proximate sites are not uncom- first is a bearing defining the specific direction of
mon.  The effects of such data would be erratic interest [measured counterclockwise from east
sample variogram points as exhibited by a large- (=0 )] and the second is a (window) angle defining
amplitude, ill-defined sawtooth pattern of the lines an arc of rotation swept in both directions from the
connecting the points. bearing.  Thus, in the terminology used here, the

(2)  Second, a proper transformation of data window angle.  Differences in sample variograms
whose probability distribution is highly skewed computed using these angle windows specified for
often produces a set of values that is approxi- different directions can be an indication of
mately normally distributed by mitigating the anisotropy.
influence of problematic extreme data values.  A
data set with a normal distribution is important in (2)  Anisotropy is generally either geometric or
kriging when confidence levels of the estimates are zonal.  Geometric anisotropy is indicated by direc-
desired.  This usage of confidence levels in a tional theoretical variograms that have a common
kriging analysis will be illustrated in Chapter 5. sill value, but different ranges.  The treatment of

(3)  Among the more common transformations used.  The lags of the directional variograms can
is the natural log transform.  As an example, for be scaled by the ratio of their ranges to the range
this transformation, the 8( will be the sample vari- of a standard or common variogram. In some
ogram values of logarithms, and subsequent kriged cases, the lags of all directional variograms are
estimates will be logarithms.  Another transfor- scaled by their respective ranges, and a common
mation that is often used, especially in spatial variogram with a range of 1 is used.  Groundwater
analyses of contaminant levels, is the indicator contaminant plumes often have geometric aniso-
transformation described in Chapter 2.  Although a tropy in which the prevailing plume direction
transformation might achieve better-behaved sam- would have a greater range than that of the transect
ple variogram points, there are subtleties to of the plume.

needed for the Saratoga data, an example using a
logarithmic transformation and an example using
the indicator transformation are presented in
Chapter 5.

max

o

total angle defining a direction is equal to twice the

geometric anisotropy is dependent on the software
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(3)  Zonal anisotropy is indicated by direc- (6)  The computed sample variograms for the
tional variograms that have the same range but general north-south and east-west directions for the
different sills.  Pure zonal anisotropy is usually not Saratoga data are shown in Figure 4-6.  The north-
seen in practice; typically it is found in combina- south variogram is specified by a direction angle of
tion with geometric anisotropy.  Such mixed 90 deg and a window angle of 45 deg.  The north-
anisotropy may be encountered if evaluating the south variogram reveals the preferential north-
variograms of three-dimensional HTRW sampling south data alignment by mimicking the omni-
results.  Variability of such data (as indicated by directional (direction angle = 0 deg and window
the sill of the variogram) may be significantly angle = 90 deg) sample variogram of Figure 4-3. 
higher and the range significantly shorter in the The east-west variogram is specified by a direction
vertical direction than in the horizontal direction. angle of 0 deg and a window angle of 45 deg.  The
In order to model this mixture of anisotropic vari- lack of pairs of locations for the east-west vario-
ograms, the overall variogram is set to a weighted gram precludes a good analysis for this direction,
sum of individual models of the directional vario- but the overlap of the few sufficiently defined
grams scaled by their ranges.  In this process, variogram points with the north-south variogram
called nesting, the choice of weights requires a trial indicates a consistency of drift in the two direc-
and error approach with a constraint that the sum tions.  Because of this consistency, an isotropic
of the weights equals the sill of the overall vario- variogram is assumed for the Saratoga residuals. 
gram.  The reader is referred to Isaaks and An example of anisotropic variograms is described
Srivastava (1989, pp. 377-390) for further infor- in Chapter 5.
mation on both types of anisotropy.

(4)  For a given number of data locations,
directional sample variograms will necessarily
have fewer points for any lag when compared to
the points for the same lag in the omnidirectional a. General.
variogram.  Hence, there will be less reliability in
the directional-variogram point values, which (1)  The importance of adequately defining the
would be a critical constraining factor for small bin values of a sample variogram is substantiated
data sets or for a data pattern that does not con- by the need to accurately generalize the data-based
form to a direction of anisotropy.  For a general behavior of the sample variogram by a theoretical
idea of the sufficiency of the data to adequately variogram (. The parameters controlling the spe-
determine any anisotropy, the computations of cific behavior of theoretical variograms are the
anisotropic sample variograms can be initially nugget value, the range, the sill, or in the case of a
limited to two orthogonal directions with window linear variogram, a slope parameter.  Of these
angles of 45 deg. parameters, the nugget and the sill can be related to

(5)  Directional sample variograms also can be
used to further delineate nonstationarity of the (2)  The nugget is essentially the extrapolation
spatial mean.  If the omnidirectional sample vario- of the sample variogram to a lag of zero.  It
gram indicates a drift in the data, the directional reflects the uncertainty of the variogram at lags
variograms may determine the dimensionality of that are much smaller than the minimum separation
the drift.  That is, although they may not establish between any two data locations.  The nugget value
the degree of the polynomial in the drift equation, can include measurement error variance, and an
the directional sample variograms can indicate the estimate of this variance will approximate a mini-
relative strengths of the drift in the u and v mum value of the extrapolation.
directions.

4-6.  Fitting a Theoretical Variogram to the
Sample Variogram Points

properties and statistics of the data. 
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Figure 4-6.  Initial directional sample variogram points for raw Saratoga data--A, north-south and B, east-west
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(3)  The sill determines the maximum value of Geometric relationships to aid in obtaining param-
a variogram and approximates the variance of the eters for the four variogram forms are described in
data.  However, the points defining (8 take prece- the following sections and are illustrated in Fig-
dence over the sample variance in locating the sill. ure 2-3 for reference.
Some variograms are unbounded, and others may
only reach a sill value asymptotically.  A defined b. Exponential variogram.
sill allows conversion of the variogram to a covari-
ance function using Equation 2-27, which is gen- The exponential variogram (Equation 2-23) is
erally done because computations in the kriging specified by the nugget g, sill s, and a practical
algorithms are more efficiently performed using a range value r.  The range is qualified as practical
covariance function. because the sill is reached only asymptotically. 

(4)  Fitting a function to the sample variogram different from the behavior of the spherical vario-
values can range from a visual fit to a sophisti- gram in that the convex behavior extends to the
cated statistical fit.  A statistical fit is an objective nugget value (Figure 2-3).  Again, a nugget value
method as long as the choice of bins and weighting and a sill value are first specified based on the 8(
of the sample variogram points remain fixed. points.  The practical range is chosen so that the
However, because the inputs will vary with investi- value of the resulting exponential function evalu-
gators, inherent subjectivity persists as in a visual ated at the practical range lag is 95 percent of the
fit.  A final calibration of the variogram param- sill value.  The specified exponential function
eters would be based on the kriging algorithm and, would mesh with the sample variogram points at
thus, either of the initial fitting methods at this least through the practical range lag.  An initial
stage would suffice. estimate of the practical range can be made by

(5)  Because the initial part of the variogram line tangent to the variogram at the nugget is at a
has the most effect on subsequent kriging output, a lag value equal to one-third of the assumed prac-
good estimate of the nugget value becomes a most tical range value as illustrated in Figure 2-3. 
important first step.  The range and the sill, in that Examples of the exponential variogram may be
order, complete the ranking of the influence of found in spatial studies of sulfate and total alka-
variogram parameters on the output of a geostatis- linity in groundwater systems (Myers et al. 1980).
tical analysis.  Whatever the fitting method used,
the theoretical variogram needs to be supported by c. Spherical variogram.  The spherical vario-
the sample variogram values.  For variograms with gram parameters (Equation 2-24) are a nugget
a range parameter, this support should extend to value g, a range r, and a sill s.  At smaller lag
the range.  Journel and Huijbregts (1978) suggest values the sample variogram points indicate linear
that this support should be through one-half the behavior from the nugget that then becomes con-
dimension of the field or essentially through one- vex and reaches a sill value at some finite lag
half the maximum lag distance of the sample data. (Figure 2-3).  A sill is estimated, and a line drawn

(6)  Most geostatistical studies can be success- variogram would intersect the sill at a lag value
fully completed using the following four singular approximately equal to two-thirds of the range. 
theoretical variogram forms:  exponential, spheri- With these estimates of the parameters, a spherical
cal, Gaussian, and linear functions (Figure 2-3). variogram is defined that should be supported by
For the example variogram determination the sample variogram points.  If the spherical plot
described in this section, only one of these singular does not fall near the sample variogram points,
forms will be selected; however, positive linear adjustments need to be made to the parameter esti-
combinations of these forms also are acceptable as mates and the subsequent fit evaluated.  Although
theoretical variograms (see section 4-5b). the spherical variogram is one of the most often

The initial behavior of the exponential variogram is

checking if the intersection of the sill value with a

through the points of the initial linear part of the
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used models for real valued spatial studies, it ( when the data are spatially correlated.  But (
seems to be a predominant model for indicator cannot be estimated until a drift equation is
values at various cutoff levels as, for example, in a obtained to yield the residuals.  Therefore, obtain-
study of lead contamination (Journel 1993).   ing a sample variogram and a subsequent theoreti-

d. Gaussian variogram.  The Gaussian vario- drift form is an iterative process (David (1977),
gram parameters (Equation 2-25) are a nugget pp. 273-274) framed by the following steps: 
value g, and a sill s, and this variogram also has a
practical range r.  The Gaussian variogram is hori- (1)  An initial variogram is specified and drift
zontal from the nugget, becomes a concave upward coefficients are computed to obtain residuals.  For
function at small lags, inflects to concave down- this step, a pure nugget (i.e. constant) variogram
ward, and asymptotically approaches a sill value can be used to compute the initial estimates of the
(Figure 2-3).  After a nugget value and sill value drift coefficients.  This is an ordinary least-squares
are specified based on the points, the variogram estimate of the drift yielding a first-iteration sam-
value at a lag of one-half the estimated practical ple variogram of residuals.
range will be two-thirds of the sill value.  Again,
this fitted variogram needs to be supported by the (2)  A theoretical variogram is fitted to the
8( points to a reasonable degree.  As will be sample variogram of the residuals and is used to
described in the example using the Saratoga data, obtain updated drift coefficients.
the Gaussian variogram often is used where the
variable analyzed is spatially very continuous, (3)  The residuals from the drift obtained in
such as a groundwater potentiometric surface. step b are used to compute an updated sample

e. Linear variogram.  Parameters for a linear
variogram (Equation 2-26) are a nugget value g, (4)  The sample variogram computed at the end
and a slope b.  Sample points indicating a linear of step 3 is compared to the sample variogram of
variogram would increase linearly from the nugget step 2.  If the two sample variograms compare
value and fail to reach a sill even for large lags favorably, then the theoretical variogram from
(Figure 2-3).  With the nugget as the intercept, the step 2 is accepted as the variogram of residuals for
slope is computed for the line passing through the subsequent kriging computations.  If the sample
8( points.  A pseudosill s can be defined as the variogram from step 3 differs markedly from the
value of the line at the greatest lag, h , between sample variogram of step 2, steps 2-4 are repeatedmax

any two locations. This lag becomes the defacto using the sample variogram of the most recent
range r for a linear variogram.  Examples of the step c.
usage of the linear variogram occur in hydrogeo-
chemical studies of specific conductance and in b. Generally, the plot of the points of 8( from
studies of trace elements such as barium and boron a set of residuals will initially increase with h,
(Myers et al. 1980). reach a maximum, and then decrease as seen in

4-7.  Additional Trend Considerations

a. If a drift in the data is indicated as in sec- behavior in the variogram of the residuals gen-
tion  4-3, the theoretical variogram of residuals erally would more readily occur with a higher
that has been fitted thus far is used to update the degree of drift polynomial.  This behavior should
drift equation.  Although ordinary least squares not prohibit acceptable variogram determination
often suffices for computing a polynomial drift because the initial points of the sample variogram
equation, drift determination itself is a function of of residuals are still indicative of the theoretical

cal variogram from drift residuals of a specified

variogram.

Figure 4-4.  This typical haystack-type behavior,
discussed by David (1977, pp. 272-273), is attri-
buted to a bias resulting from the estimation error
in the drift form and its coefficients.  Thus, this
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variogram.  For example, the lag associated with
the maximum of 8( of the residuals can be a good
first approximation for the range of the theoretical
variogram. a. General.

4-8.  Outlier Detection

a. Outliers in a data set can have a substantial ing cross-validation technique.  In this procedure,
adverse effect on 8(.  However, divergent data the fitted theoretical variogram is used in a kriging
values can be screened for evaluation using a analysis in which data values are individually sup-
Hawkins statistic (Hawkins 1980), which is pressed and estimates made at the location using
described in the context of kriging by Krige and subsets of the remaining points.  As described in
Magri (1982).  A neighborhood containing 4 to 10 section 4-3, these subsets are the data points in a
data points, approximately normally distributed, moving neighborhood surrounding the point under
around each suspected outlier must be defined. consideration.  The calibration estimate made at
Despite potential outliers in the data set, a best each data location requires a matrix inversion,
guess initial theoretical variogram also is needed. which could be very time-consuming if all remain-

b. The Hawkins statistic is obtained by com- matrices rather than just those within a neighbor-
paring a suspect datum to the mean value of the 4 hood of a limited search radius. 
to 10 surrounding data, the smaller number being
sufficient if the variability is lower.  The spacing (2)  After kriged values at all data locations
between these surrounding points is accounted for have been estimated in the above manner, the data
by the properties of the chosen variogram.  A value are used with their kriged values and kriging stan-
for the statistic of 3.84 or higher would indicate an dard deviation to obtain cross-validation statistics. 
outlier on the basis of a 95-percent confidence A successful calibration is based on criteria for
interval.  A larger number of surrounding points these statistics, which are described in the next
has the direct effect of increasing the magnitude of section.  If the criteria cannot be reasonably met by
the statistic.  Anomalous points are removed from adjusting the parameters in the given theoretical
the data set and the procedures described for variogram function, then calibration should be
obtaining the sample variogram are repeated for reinitialized with a different theoretical variogram
the smaller data set.  There were no outlier prob- function.  In some data sets with nonstationary
lems in the Saratoga data. spatial means, the drift polynomial may have to be

satisfactory calibration.c. There is debate among geostatisticians
regarding the merit of automated outlier-detection
methods.  A procedure such as that described here
is presented as an investigative tool with the under-
standing that the investigator will also use atten-
dant justification along with a Hawkins-type
statistic to ultimately decide if a data value is
discarded as a true outlier or retained as a valid
observation.  In some situations, highly problem-
atic data values are removed for computation of
the sample variogram points but are reinstated for
kriging.

4-9.  Cross-Validation for Model 
Verification

(1)  Parameters of the theoretical variogram
obtained from the initial fitting and refinement of
the sample variogram are calibrated using a krig-

ing data locations were used to construct the

changed as well as the variogram to achieve a

b. Calibration statistics.

(1)  The kriging cross-validation error e  cor-i
responding to measurement z(x ) is defined asi

(4-3)

where is the kriged estimate of based
on the remaining n-1 measurements in the data set.  
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The kriged estimate is obtained by ordinary kriging results is the unbiasedness condition where 
if the spatial mean is constant or by universal krig-
ing if the spatial mean is not stationary.  A reason-
able criterion for selecting a theoretical variogram
would be to minimize the squared errors, ,
with respect to the variogram parameters.  How
ever, unlike ordinary least-squares regression,
which also minimizes the sum of squared errors,
simply minimizing the squared errors is not suffi-
cient for kriging because the resulting model can
yield highly biased estimates of the kriging vari-
ances, , where is the kriging vari-
ance at location x .  This simple minimizationi

would give unrealistic measures of the accuracy of
the kriging estimates.  To guard against such bias,
an expression for the square of a reduced kriging
error is defined:

(4-4)

where the kriging variances are computed using
either Equation 2-36 or 2-47.  If the kriging vari-
ance is an unbiased estimate of the true mean-
squared error of estimate, then the reduced kriging
errors would have an average near one.  Therefore,
the standard cross-validation procedure for evalu-
ating a theoretical variogram is:

(4-5)

(2)  The expression to be minimized is called
the kriging root-mean-squared error and the con-
straint is called the reduced root-mean-squared
error.  The reduced root-mean-squared error
should be well within the interval having endpoints

 and  (Delhomme

1978).  An additional check on the cross-validation 

(3)  As indicated in Chapter 2, if probabilistic
statements concerning an actual value of Z at an
unmeasured location are to be made relative to the
kriged estimate and the kriging variance at the
location, it is necessary to explore the distribution
of the cross-validation kriging errors.  In particu-
lar, it is desirable that the reduced errors, e~i

=1,2...,n, are approximately normally distributed
with mean 0 and variance 1.  A histogram or nor-
mal probability plot of the reduced kriging errors
can be used to assess the validity of assuming a
standard normal distribution for the reduced krig-
ing errors.  Additionally, if the distribution of
reduced kriging errors can be assumed to be stan-
dard normal, outliers not detected using the method
discussed in section 4-7 may be detected by com-
paring the absolute values of the reduced kriging
errors to quantiles of the standard normal
distribution. 

(4)  Using the Saratoga data, a spherical vario-
gram was fitted to the refined sample variogram of
the residuals.  The estimated nugget was about
1.49 m , the sill was 133.8 m , and the range was2 2

about 48 km.  Because of difficulty in determining
an exact extrapolated value for the nugget, the
value of 1.49 m  was selected based on an esti-2

mated measurement error related to obtaining
water levels at the well depths in the Saratoga
valley. 

(5)  After two iterations using drift residuals,
as described in section 4-7, a final variogram was
chosen with a nugget of 1.49 m , a sill of 148.6 m ,2 2

and a range of 44.8 km (Figure 4-7).  These
parameters defined the theoretical variogram used
to obtain the cross-validation errors using univer-
sal kriging with an assumed linear drift.  The best
combination of statistics that could be obtained
after several attempts at refining the model were a
root-mean-squared error of 3.45 m and a reduced
root-mean-squared error of 0.5794.  The
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reduced-root-mean-squared error is too small, parameters, generally, also will have an effect on
indicating that the kriging variances produced by the mean-squared error.  The larger the nugget is
the model are too large compared to the actual as a percentage of the sill, the larger the mean-
squared errors.  This fact, coupled with the rather squared error will be.  In general, improvements in
large root-mean-squared error, makes the theo- one statistic are usually made at the expense of the
retical variogram model unacceptable.  In sec- other statistics.  The optimization of the statistics
tion 4-9c, a Gaussian variogram is fitted to the as a set is, in effect, a trial and error procedure that
data that produces much better cross-validation is operationally convergent.
results than the results for the spherical variogram.

c. Variogram-parameter adjustments. mate a standard normal distribution.  If this is the

(1)  If any of the cross-validation statistics to achieve a more normal distribution, and the
vary unacceptably from their suggested values, variogram estimation procedure would be repeated.
minor adjustments to the variogram parameters
can be made to attempt to improve the statistics. (5)  Because no convergence could be reached
Whatever modifications are made to the param- for parameter values of a spherical variogram for
eters, they should not have to be so severe that the the Saratoga data, a Gaussian theoretical vario-
variogram function drastically deviates from the gram  was fitted to the sample variogram of
sample variogram points.  If the support of the residuals in Figure 4-4.  This choice was made
sample variogram points is compromised in order because the initial sample variogram points could
to achieve acceptable cross-validation results with be interpreted to have a slight upward concavity,
the given drift-variogram model, a different drift- but eventually reached a sill.  This behavior can be
variogram combination should be investigated. attributed to correlation rather than to further drift. 

(2)  A reduced root-mean-squared error that is sian parameters, a Gaussian variogram with a
unacceptable may be improved upon by adjusting nugget of 1.49 m , a sill of 185.81 m , and a range
the range parameter or the nugget value of the of 27.52 km (Figure 4-8) yielded a root-mean-
variogram.  Modifying the range parameter should squared error of 2.33 m and a reduced-root-mean-
be considered first and any shifts in the nugget squared error of 1.083.  The mean cross-validation
value should be minimal and made only as a final error is 0.0195 m.  These values represent an
recourse.  Calibration errors are relatively insen- improvement over the spherical variogram and
sitive to minor adjustments of the sill. were deemed acceptable for the Gaussian

(3)  If the reduced root-mean-squared error is
too small, as in the Saratoga example, extending (6)  A probability plot of the reduced kriging
the range (equivalent to decreasing the slope for a errors using the final Gaussian variogram is shown
linear variogram) will decrease the kriging vari- in Figure 4-9.  It is reasonably linear between two
ance and thus increase the reduced root-mean- standard deviations and, thus, approximates a
squared error.  If a shift in the nugget value is standard-normal-distribution function.  Finally, a
required, a decrease in the nugget will reduce the plot in Figure 4-10 of the data versus their kriged
kriging variance.  If the reduced root-mean- estimates indicates that the linear drift-Gaussian
squared error is too large, then a contraction of the variogram model selected for the Saratoga data
range or a positive shift in the nugget value can be would produce accurate estimates of groundwater
made, keeping in mind the above caveat of priority elevations for interpolation or contour gridding in
and extent of the changes.  Changes in these the region.

(4)  Reduced kriging errors may not approxi-

case, a transformation of the data may be needed

After an iterated cross-validation with the Gaus-

2 2

variogram. 
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